Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Here we provide percent contribution of mineral associated (i.e., heavy fraction - HF) and relatively more labile (i.e., light fraction - LF) organic matter through soil profiles and along hillslope catena within sites in the Critical Zone Network (CZNet) Geomicrobiology cluster. Each sample is separated into a HF an a LF utilizing a 1.85 g cm-3 sodium polytungstate (3Na2WO4·9WO3·H2O or Na6 [H2W12O40]) solution. The resultant fractions are run for percent carbon (C) and nitrogen (N) and their associated stable isotopes (δ13C and δ15N) to offer novel insights in soil organic matter processes. Samples that were either too small for analytical analysis or below instrument detection limit are labeled with BDL.more » « less
-
Abstract Increasing fine root carbon (FRC) inputs into soils has been proposed as a solution to increasing soil organic carbon (SOC). However, FRC inputs can also enhance SOC loss through priming. Here, we tested the broad-scale relationships between SOC and FRC at 43 sites across the US National Ecological Observatory Network. We found that SOC and FRC stocks were positively related with an across-ecosystem slope of 7 ± 3 kg SOC m−2per kg FRC m−2, but this relationship was driven by grasslands. Grasslands had double the across-ecosystem slope while forest FRC and SOC were unrelated. Furthermore, deep grassland soils primarily showed net SOC accrual relative to FRC input. Conversely, forests had high variability in whether FRC inputs were related to net SOC priming or accrual. We conclude that while FRC increases could lead to increased SOC in grasslands, especially at depth, the FRC-SOC relationship remains difficult to characterize in forests.more » « lessFree, publicly-accessible full text available December 1, 2026
-
This data is an on-going collection of soil temperature, soil moisture, soil CO2 concentration, and soil O2 concentration starting in October 2021. We have installed sensors and probes at different soil depths across landscapes in five of the former Critical Zone Observatory locations (see the document named "sensor location"). Soil temperature and moisture are measured using Acclima SDI-12 sensors. Soil CO2 concentrations are measured using Eosense CO2 probes (switching to Vaisala GMP343 and GMP251 in 2023). Soil O2 concentrations are measured using Apogee SO-110-L-10 soil oxygen sensors. This dataset, along with our measurements of soil geomicrobiology and biogeochemistry (available in EarthChem), will help us understand the role of microbes as drivers of Critical Zone biogeochemistry and soil formation.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Deep soils represent a dynamic interface between surface soils and saprolite or bedrock, influencing water flow, solute and gas exchange, and mineral and organic matter transformations from local to global scales. Root architecture reflects land cover and soil heterogeneity, enabling vegetation access to resources that vary temporally and spatially while shaping soil structure and formation. However, how land use can influence roots and soil structure relatively deep in the subsurface (>30 cm) remains poorly understood. We investigate how cropland‐related land use and subsequent vegetation recovery alter rooting dynamics and soil structure in deeper horizons. Using a large‐scale data set representing multiple land uses as a means of varying root abundance across four soil orders, we demonstrate that B horizon root loss and regeneration are linked to changes in multiple soil structural attributes deep within soil profiles. Our findings further suggest that the degree of soil development modulates the extent of structural transformations, with less‐developed soils showing greater susceptibility to root‐associated structural shifts. The greatest change in structural development and distinctness was observed in Inceptisols, while Ultisols exhibited the least change. Such soil structural changes affect water flowpaths, carbon retention, and nutrient transport throughout the subsurface. This work thus underscores the need for Earth system models to capture dynamic soil structural attributes that respond to land‐use change. We suggest that changes in deep‐rooting abundance, such as those accelerating in the Anthropocene, may be an important agent of subsurface structural change with meaningful implications for contemporary and future ecosystem feedbacks to climate.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Two major barriers hinder the holistic understanding of subsurface critical zone (CZ) evolution and its impacts: (a) an inability to measure, define, and share information and (b) a societal structure that inhibits inclusivity and creativity. In contrast to the aboveground portion of the CZ, which is visible and measurable, the bottom boundary is difficult to access and quantify. In the context of these barriers, we aim to expand the spatial reach of the CZ by highlighting existing and effective tools for research as well as the “human reach” of CZ science by expanding who performs such science and who it benefits. We do so by exploring the diversity of vocabularies and techniques used in relevant disciplines, defining terminology, and prioritizing research questions that can be addressed. Specifically, we explore geochemical, geomorphological, geophysical, and ecological measurements and modeling tools to estimate CZ base and thickness. We also outline the importance of and approaches to developing a diverse CZ workforce that looks like and harnesses the creativity of the society it serves, addressing historical legacies of exclusion. Looking forward, we suggest that to grow CZ science, we must broaden the physical spaces studied and their relationships with inhabitants, measure the “deep” CZ and make data accessible, and address the bottlenecks of scaling and data‐model integration. What is needed—and what we have tried to outline—are common and fundamental structures that can be applied anywhere and used by the diversity of researchers involved in investigating and recording CZ processes from a myriad of perspectives.more » « less
-
Abstract The size and spatial distribution of soil structural macropores impact the infiltration, percolation, and retention of soil water. Despite the assumption often made in hydrologic flux equations that these macropores are rigid, highly structured soils can respond quickly to moisture variability‐induced shrink‐swell processes altering the size distribution of these pores. In this study, we use a high‐resolution (180 m) laser imaging technique to measure the average width of interpedal, planar macropores from intact cross sections and relate it to matrix water content. We also develop an expression for unsaturated hydraulic conductivity that accounts for dynamic macropore geometries and propose a method for partitioning sensor soil water content data into matrix and macropore water contents. The model was applied to a soil in northeastern Kansas where soil monoliths had been imaged to quantify macropore properties and continuous water content data were collected at three depths. Model‐predicted macropore width showed significant sensitivity to matrix water content resulting in changes of 15%–50% of maximum width over the 15‐month period of record. Transient saturated hydraulic conductivity predicted from the model compared favorably to a previously developed model accounting for moisture‐induced changes to structural unit porosity. Following periods of low soil moisture, infiltrating meteoric water filled highly conductive macropores increasing by several orders of magnitude which subsequently decreased as water was absorbed into the matrix and macropores drained. This model offers a means by which to combine measurable morphological data with soil moisture sensors to monitor dynamic hydraulic properties of soils susceptible to shrink‐swell processes.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
